The mean is computed as follows:
[tex]\operatorname{mean}=\frac{\text{ sum of terms}}{\text{ number of terms}}[/tex]
The mean of Mrs. Gorbin's class is:
[tex]\begin{gathered} \operatorname{mean}=\frac{2\cdot47+\cdot1\cdot51+5\cdot53+2\cdot55+1\cdot57+3\cdot60+1\cdot65}{15} \\ \operatorname{mean}=\frac{94+51+265+110+57+180+65}{15} \\ \operatorname{mean}=\frac{822}{15} \\ \operatorname{mean}=54.8 \end{gathered}[/tex]
The mean of Mrs. Hamilton's class is:
[tex]\begin{gathered} \operatorname{mean}=\frac{1\cdot45+1\cdot51+2\cdot55+3\cdot57+5\cdot60+3\cdot65}{15} \\ \operatorname{mean}=\frac{45+51+110+171+300+195}{15} \\ \operatorname{mean}=\frac{872}{15} \\ \operatorname{mean}\approx58.13 \end{gathered}[/tex]
Then, the mean of the data for Mrs. Hamilton's class is greater than the mean of the data for Mrs. Gorbin's class.