👤

Use the Trapezoidal Rule to approximate ∫53(6x2+1) dx using n=4. Round your answer to the nearest tenth. Evaluate the exact value of ∫53(6x2+1) dx and compare the results.

Use The Trapezoidal Rule To Approximate 536x21 Dx Using N4 Round Your Answer To The Nearest Tenth Evaluate The Exact Value Of 536x21 Dx And Compare The Results class=

Answer :

Given:

[tex]\int_3^5(6x^2+1)dx\text{ and n=4.}[/tex]

Required:

We need to find the trapezoid approximation and exact value.

Explanation:

[tex]Let\text{ f\lparen x\rparen=}6x^2+1.[/tex]

The given interval is {3,5} and n=4.

Consider the formula.

[tex]\Delta x=\frac{b-a}{n}[/tex]

Substitute a=5, b=5, and n=4 in the formula,

[tex]\Delta x=\frac{5-3}{4}=\frac{2}{4}=0.5[/tex][tex]x_0=3,x_1=3.5,x_2=4,x_3=4.\text{5 and }x_4=5.[/tex]

Consider the trapezoid formula.

[tex]\int_a^bf(x)dx\approx\frac{1}{2}\Delta x(f(x_0)+2f(x_1)+2f(x_2)+2f(x_3)+f(x_4))[/tex][tex]Substitute\text{ }\Delta x=0.5,x_0=3,x_1=3.5,x_2=4,x_3=4.\text{5 and }x_4=5\text{ in the formula,}[/tex][tex]\int_3^5f(x)dx\approx\frac{1}{2}(0.5)(f(3)+2f(3.5)+2f(4)+2f(4.5)+f(5))[/tex][tex]Use\text{ f\lparen x\rparen=}6x^2+1.[/tex][tex]=\frac{1}{2}(0.5)((6(3)^2+1)+2(6(3.5)^2+1)+2(6(4)^2+1)+2(6(4.5)^2+1)+(6(5)^2+1)[/tex][tex]=\frac{1}{2}(0.5)(55+149+194+245+151)[/tex][tex]\int_3^5(6x^2+1)dx\approx198.5[/tex]

Consider the given integral.

[tex]\int_3^5(6x^2+1)dx=\int_3^56x^2dx+\int_3^51dx[/tex]

Integrate the given integral.

[tex]\int_3^5(6x^2+1)dx=[\frac{6x^3}{3}]^5_3+[x]^5_3[/tex][tex]=[2x^3]_3^5+[x]_3^5[/tex][tex]=[2(5)^3-2(3)^3]+[5-3][/tex][tex]=198[/tex][tex]\int_3^5(6x^2+1)dx=198[/tex]

Final answer:

[tex]\text{ Trapezoidal Approximation}\approx198.5[/tex][tex]Exact\text{ value=198}[/tex]