👤

use properties of exponents to write the function in the form f(t)=ka^t, where k is a constant.2^2t+3

Answer :

[tex]8\times4^t[/tex]Explanation:

f(t) = ka^t

[tex]2^{2t+3}​is\text{ the same as }2^{\mleft\{2t\mright\}}\times2^3[/tex]

Reason: Product of exponents

a^m + a^p = a^(m+p)

when the base is the same and the sign between both base is multiplication, the exponents are added together after picking one of the base

[tex]\begin{gathered} 2^{2t+3}​=2^{\{2t\}}\times2^3 \\ =2^{2t}\times8 \end{gathered}[/tex][tex]\begin{gathered} 2^{\{2t\}}=2^{2\times t} \\ =4^t \\ 2^{2t}\times8\text{ }=4^t\times8 \end{gathered}[/tex][tex]\begin{gathered} In\text{ the form:}f\mleft(t\mright)=ka^t \\ 2^{2t+3}​=8\times4^t \\ k\text{ = constant= 8} \end{gathered}[/tex]