Classify the system and identify the number of solutions.4x + 3y - 4z = 43x + 5y + 2z = 97x + 4y - 6z = 1

Given,
The pair of the equations is,
[tex]\begin{gathered} 4x+3y-4z=4 \\ 3x+5y+2z=9 \\ 7x+4y-6z=1 \end{gathered}[/tex]The situation of no solution is,
[tex]\frac{\frac{a_1}{a_2}}{a_3}=\frac{\frac{b_1}{b_2}}{b_3}\ne\frac{\frac{c_1}{c2_{}}}{c_3}[/tex]The situation of unique solution is,
[tex]\frac{\frac{a_1}{a_2}}{a_3}\ne\frac{\frac{b_1}{b_2}}{b_3}\ne\frac{\frac{c_1}{c2_{}}}{c_3}[/tex]The situation of infinite solution is,
[tex]\frac{\frac{a_1}{a_2}}{a_3}=\frac{\frac{b_1}{b_2}}{b_3}=\frac{\frac{c_1}{c2_{}}}{c_3}[/tex]So, the equation have unique solution or one solution.
Hence, option A is correct.