👤

The volume of a cylinder is 180 cm. The radius of the base of the cylinder is 3 cm.What is the height of the cylinder?(Simplify your answer)

Answer :

We can write the volume of the cylinder as the product of the area of the base and its height:

[tex]V=A_b\cdot h[/tex]

The area of the base is:

[tex]A_b=\pi r^2[/tex]

Then, we can write the first equation and clear the height as:

[tex]\begin{gathered} V=A_b\cdot h=\pi r^2\cdot h \\ h=\frac{V}{\pi r^2} \end{gathered}[/tex]

Replcing with the values V=180 cm^3 and r=3 cm, we get:

[tex]h=\frac{180\operatorname{cm}^3}{\pi\cdot(3\operatorname{cm})^2}=\frac{180\operatorname{cm}^3}{\pi\cdot9\operatorname{cm}}\approx\frac{180\operatorname{cm}^3}{28.3\operatorname{cm}^2}=6.4\operatorname{cm}[/tex]

Answer: the height is 6.4 cm.