👤

Determine whether n^2-10n-25 is a perfect square trinomial. If so, choose the correct factoring. A. NoB. Yes;(n+5)^2C. Yes;(n+5)(n-5)D. Yes;(n-5)^2

Answer :

The given polynomial is,

[tex]\begin{gathered} n^2-10n-25=n^2-2\times5\times n+5^2-5^2-25 \\ =(n-5)^2-50 \end{gathered}[/tex]

Thus, the given polynomial is no a perfect square.

Thus, Option (a) is correct.

In Trainings: Other Questions