Answer :
Answer:
[tex]2x+5y=41[/tex]
Step-by-step explanation:
Median of a triangle: A line segment that connects a vertex of a triangle to the midpoint of the opposite side.
Vertex: The point where any two sides of a triangle meet.
Given vertices of a triangle:
- A = (-2, 9)
- B = (-33, 13)
- C = (-21, 25)
Step 1
Find the midpoint of BC (Point D) by using the Midpoint formula.
Midpoint between two points
[tex]\textsf{Midpoint}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)[/tex]
Define the endpoints:
- [tex]\text{Let }(x_1,y_1)=\sf B=(-33,13)[/tex]
- [tex]\text{Let }(x_2,y_2)=\sf C=(-21,25)[/tex]
Substitute the defined endpoints into the formula:
[tex]\textsf{Midpoint of BC}=\left(\dfrac{-21-33}{2},\dfrac{25+13}{2}\right)=(-27,19)[/tex]
Therefore, D = (-27, 19).
Step 2
Find the slope of the median (line AD) using the Slope formula.
Define the points:
- [tex]\textsf{let}\:(x_1,y_1)=\sf A=(-2,9)[/tex]
- [tex]\textsf{let}\:(x_2,y_2)=\sf D=(-27,19)[/tex]
Substitute the defined points into the Slope formula:
[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{19-9}{-27-(-2)}=-\dfrac{2}{5}[/tex]
Therefore, the slope of the median is -²/₅.
Step 3
Substitute the found slope and one of the points into the Point-slope formula to create an equation for the median.
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-9=-\dfrac{2}{5}(x-(-2))[/tex]
Simplify and rearrange the equation so it is in standard form Ax+By=C:
[tex]\implies 5(y-9)=-2(x+2)[/tex]
[tex]\implies 5y-45=-2x-4[/tex]
[tex]\implies 2x+5y-45=-4[/tex]
[tex]\implies 2x+5y=41[/tex]
Conclusion
Therefore, the equation of the median is:
2x + 5y = 41
