Answer:
x = 12.182 (nearest thousandth)
Step-by-step explanation:
Given equation:
[tex]1-2 \ln x=-4[/tex]
Subtract 1 from both sides:
[tex]\implies 1-1 -2 \ln x =-4-1[/tex]
[tex]\implies -2 \ln x=-5[/tex]
Divide both sides by -2:
[tex]\implies \dfrac{-2 \ln x}{-2}=\dfrac{-5}{-2}[/tex]
[tex]\implies \ln x = \dfrac{5}{2}[/tex]
[tex]\textsf{As }\: \ln x=\log_ex \:\:\textsf{}[/tex], the natural logarithm can be canceled by giving both sides a base of e (Euler's number):
[tex]\implies e^{\ln x}= e^{\frac{5}{2}[/tex]
[tex]\implies x= e^{\frac{5}{2}[/tex]
[tex]\implies x=12.182\:\: \sf (nearest\:thousandth)[/tex]