Answer :
Answer:
The two factors of the first number are -4 and 9.
Step-by-step explanation:
We're given:
- Two numbers have a product of -36
- The same two numbers have a sum of 5
Let the two numbers be a and b:
- [tex]ab=-36[/tex]
- [tex]a+b=5[/tex]
Solving for b
Isolate a in the second equation and solve for b:
[tex]a+b=5\\a=5-b[/tex]
[tex](5-b)b=-36\\5b-b^2=-36[/tex]
Arrange in [tex]ax^2+bx+c=0[/tex] format:
[tex]-b^2+5b+36=0[/tex]
Divide both sides by -1:
[tex]b^2-5b-36=0[/tex]
Factor:
[tex]b^2+4b-9b-36=0\\b(b+4)-9(b-4)=0\\(b-9)(b+4)=0[/tex]
Solve for b using the zero product property:
[tex]b=-4,9[/tex]
Solve for a
Substitute b back into the second equation to solve for a:
[tex]a+b=5[/tex]
First, let b = -4:
[tex]a-4=5\\a=9[/tex]
Let b = 9:
[tex]a+9=5\\a=-4[/tex]